

Inverters in Microgrids

Giri Venkataramanan

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

13 January 2004

Giri@engr.wisc.edu

Outline

- Electric grid operations
- Frequency and voltage control
- Inverter based generation
- Inverter dynamic modeling
- Summary

Electrical generation

- Rotating machines
- Primarily synchronous machines
- Three phase ac output

Alternators

- Frequency
 Tied to the speed of the shaft
- Voltage
 Tied to the field excitation

Frequency Regulation (Ione machine)

- Shaft speed
 mechanical shaft power equal to
 electrical load power + losses
- Speed governors
 Measure shaft speed
 - Adjust energy (fuel) input to increase or decrease speed

13 January 2004 LBL Seminar GV 5

Frequency Regulation (Grid)

- Cannot have several machines trying to control speed set point locally with zero error – lead to chaos
- Allow all but one machine to have set-point errors
- All machines work on a dispatched power set point, speed follows the master
- Master machine follows the load power demand and regulates the frequency

Voltage Regulation (Ione machine)

Field regulator

Measure terminal voltage

Adjust field excitation input to increase or decrease voltage

Field excitation

Reactive power output equal to reactive power demand of load

Voltage Regulation (Grid)

- Need appropriate voltage set points
- Improper set-points will lead to circulating currents between machines
- Typically local reactive power control loops

Distributed Generation

- Conventional reciprocating engines
- Wind generators
- Photovoltaics
- Microturbines
- Fuel cells
- Wave energy
- Significant fraction of generation in the future

Distributed Generation

Inverter embedded generation

Inverter details

PWM Synthesis – A, B & C phases

- Phase shift between waveforms may be varied
- Amplitude of waveforms may be dissimilar
- All the three phase voltages could have an average Vdc/2 common mode voltage
- Causes a neutral shift
- Will cancel out in the line-line voltages

Microgrid Energy and Power Quality Management Functions

- Load profile control
- Source utilization
- Peak-shaving
- Reactive power injection
- POL voltage control
- Voltage imbalance correction

Key Control Issues

- Power flow control
- Frequency control
- Local voltage control
- Reactive power control

- Power sharing
- Frequency matching

Typical controller structure (classical)

Typical Control Trend Today

- Operate as a balanced current source under utility connected operation
- Operate as a balanced voltage source under stand-alone operation
- Interchange from one mode to another requires anywhere between 10 seconds and 30 minutes

Single line equivalent circuit and phasor diagram

- Vac PCC voltage
- Vo Point of Connection (POC) Voltage

Power throughput of inverter

$$P = \frac{V_{ac}V_o}{X_t}\sin\delta$$

$$Q = \frac{{V_o}^2}{{X_t}} - \frac{{V_{ac}}{V_o}}{{X_t}} \cos \delta$$
 • Angle between V_{ac} and V_o determines power flow

- Magnitude of V_o determines reactive power flow

Inverter controls

Laboratory scale microgrid

Synchronization to grid 'beat voltage'

P and Q transients

Synchronization to grid

Voltage and current waveforms

Disconnection from grid

Voltage and current waveforms

Step response of power

Voltage and current waveforms

Computer simulations

Voltage profile along an unbalanced distribution feeder with conventional dg control

Voltage profile along an unbalanced distribution feeder with unbalanced dg control

Modeling objectives

- Need to model dynamic properties
- Control input and real power flow or power angle
- Control input and reactive power flow or voltage magnitude

Key control variables

$$m(t) = |m(t)|e^{j \angle m(t)}$$

$$v_i(t) = |v_i(t)|e^{j\angle v_i(t)}$$

$$i_L(t) = |i_L(t)| e^{j \angle i_L(t)}$$

$$v_o(t) = |v_o(t)| e^{j \angle v_o(t)}$$

Instantaneous phase quantities are projections of the rotating vectors on appropriate axes

Dynamic Equations

$$L\frac{d}{dt}i_{L} = v_{dc}|m|\cos(\angle m - \angle i_{L}) - |v_{o}|\cos(\angle v_{o} - \angle i_{L})$$

$$L|i_{L}|\frac{d}{dt}\angle i_{L} = v_{dc}|m|\sin(\angle m - \angle i_{L}) - |v_{o}|\sin(\angle v_{o} - \angle i_{L})$$

$$C\frac{d}{dt}|v_{o}| = |i_{L}|\cos(\angle i_{L} - \angle v_{o}) - \frac{|v_{o}|}{R}$$

$$C|v_{o}|\frac{d}{dt}\angle v_{o} = |i_{L}|\sin(\angle i_{L} - \angle v_{o}) - \frac{|v_{o}|}{R}$$

13 January 2004 LBL Seminar

Steady state operating condition

$$0 = V_{dc} |M| \cos(\angle M - \angle I_L) - |V_o| \cos(\angle V_o - \angle I_o)$$

$$L|I_L|\omega| = V_{dc}|M|\sin(\angle M - \angle I_L) - |V_o|\sin(\angle V_o - \angle I_L)$$

$$0 = |I_L|\cos(\angle I_L - \angle V_o) - \frac{|V_o|}{R}$$

$$C|V_o|\omega = |I_L|\sin(\angle I_L - \angle V_o) - \frac{|V_o|}{R}$$

13 January 2004 LBI Seminar

Steady state operating condition

$$0 = V_{dc} | M | \cos(\phi_{mi_L}) - | V_o | \cos \phi_{v_o i_L}$$

$$L | I_L | \omega = V_{dc} | M | \sin \phi_{mi_L} - | V_o | \sin \phi_{v_o i_L}$$

$$0 = | I_L | \cos \phi_{i_L v_o} - \frac{|V_o|}{R}$$

$$C | V_o | \omega = | I_L | \sin \phi_{i_L v_o} - \frac{|V_o|}{R}$$

Classical phasor solution

Small signal model at operating point

$$\dot{x} = Ax + Bu$$
$$y = Ex + Fu$$

$$u = |\widetilde{m}|$$

$$x = \begin{bmatrix} \left| \widetilde{i}_L \right| \\ \angle \widetilde{i}_L \\ \left| \widetilde{v}_o \right| \\ \angle \widetilde{v}_o \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & \omega I_{L} & \frac{-|V_{o}|}{LR|I_{L}|} & \frac{-\omega C|V_{o}|^{2}}{|I_{L}|^{2}L} \\ \frac{-\omega}{|I_{L}|} & 0 & \frac{-\omega C|V_{o}|}{|I_{L}|^{2}L} & \frac{-|V_{o}|^{2}}{LR|I_{L}|^{2}} \\ \frac{|V_{o}|}{RC|I_{L}|} & -\omega|V_{o}| & \frac{-1}{RC} & \omega|V_{o}| \\ \frac{\omega}{|I_{L}|} & \frac{1}{RC} & \frac{-\omega}{|V_{o}|} & \frac{-1}{RC} \end{bmatrix} \qquad B = \begin{bmatrix} \frac{V_{dc}\cos\phi_{mi_{L}}}{L} \\ \frac{V_{dc}\sin\phi_{mi_{L}}}{L|I_{L}|} \\ 0 \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{V_{dc} \cos \phi_{mi_L}}{L} \\ \frac{V_{dc} \sin \phi_{mi_L}}{L|I_L|} \\ 0 \\ 0 \end{bmatrix}$$

Transfer function

Magnitude of modulation to output voltage

Dynamic interaction issues

- Angle input to output transfer functions
- Cross coupling transfer functions
- Selection of controllers and tuning
- Outer loop effects (Real and reactive power, droop, etc.)
- Frequency synchronization
- Interactions between multiple parallel units
- Measurement delays, uncertainties, imbalances, etc.